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ABSTRACT 

In the finite element analysis that deals with large deformation, the process usually produces distorted elements at the later stages 
of the analysis. These distorted elements lead to analysis problems, such as inaccurate solutions, slow convergence and premature 
termination of the analysis. This paper proposes a new mesh generation algorithm to mesh the input part for pure Lagrangian 
analysis, where our goal is to improve the shape quality of the elements during the analysis in order to reduce the number of 
inverted elements as well as to decrease the chance of premature termination of the analysis. One pre-analysis is required to 
collect the geometric information and stress information in the analysis. The proposed method then uses the deformed shape 
boundary known from the pre-analysis, finds the optimal node locations, considers the stress information to control the mesh 
sizes as well as control the mesh directionality, generates meshes on the deformed boundary, and finally, maps the elements back 
to the undeformed boundary using inverse bilinear mapping.  The proposed method has been tested on two forging example 
problems. The results indicate that the method can improve the shape quality of the elements during the analysis, and 
consequently extend the life of the analysis, which reducing the chance of premature analysis termination. 
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1. INTRODUCTION 

The process of finite element analysis that deals with large 
deformation usually produces distorted elements at the later 
stages of the analysis. These distorted elements lead to 
several problems; inaccurate results, slow convergence and 
premature analysis termination.  

Metal-forming processes are the most common applications 
involved with large deformation analysis; they include 
forging, extrusion, rolling, deep drawing, and so on. This 
paper will stress the problem of two-dimensional closed-die 
forging. 

Two examples of two-dimensional closed-die forging, 
shown in Figure 1 are examined in this paper. The setting 
of each problem consists of a rigid die moving downward 
at a constant velocity onto the deformable part, which is 
constrained on the left and bottom edges. The die deforms 
the part into geometry with sharp corners, which eventually 
produce highly distorted elements during the analysis. As 
the finite element analysis is made on these problems using 
pure Lagrangian method, several elements experience 
severe distortion. Consequently, the analysis of the first 
example cannot be completed, and the results of the second 
example contain many ill-shaped elements.  

Although there are two conventional techniques, adaptive 
remeshing and Arbitrary Lagrangian-Eulerian (ALE), for 
addressing this problem, both techniques have drawbacks. 
The adaptive remeshing technique completely remeshes the 
part at every certain number of analysis steps [1-3], 
however, the drawback of this method is its high 
computational costs [3]. The other solution is an analysis 
type called Arbitrary Lagrangian-Eulerian (ALE), which is 
the combination of Lagrangian and Eulerian analysis. It 
was developed to reduce the repetition of complete 
remeshing [4-8]. However, because of its complexity, the 
computation cost is much more expensive than using pure 
Lagrangian analysis. There are also some limitations, since 
in many cases ALE analysis cannot prevent the need for 
complete remeshing, and remapping of state variables is 
another drawback of this method [4].  

As an alternative solution, this paper proposes a method to 
pre-deform an input mesh for Lagrangian analysis; the goal 
is to improve the shape quality of the elements during 
analysis in order to reduce the number of inverted elements, 
and to reduce the chance of premature analysis termination.  

The remainder of the paper is organized as following: 
Section 2 discusses two existing methods used in the finite 
element analysis of large deformation processes. Section 3 
discusses the proposed method. Results are shown in 
section 4 and Section 5 is the Conclusion. 



 
 

(a) Example 1 

 

(b) Example 2 

Figure 1: Example of large deformation finite 
element analysis of closed-die forging 

2. PREVIOUS METHODS 

2.1 Adaptive Remeshing 
Adaptive remeshing is a method for enriching the mesh 
domain whenever it becomes unacceptable due to severe 
distortion during the analysis process. The general concept 
is to replace old and unsuitable mesh with a new and better-
conditioned mesh when the error approximation of the 
analysis exceeds the tolerance, or the maximum error value 
allowed [2]. The newly created mesh may not necessarily 
have the same topology as the old mesh, and the number of 
nodes and elements of the new mesh may differ from the 
old mesh. Therefore, the state variables and history-
dependent variables must also be transferred from the old 
to the new mesh. State variables include nodal 
displacements and the variables of the contact algorithm. 
The history-dependent variables are the stress tensor, strain 
tensor, plastic strain tensor, and so on.  

Adaptive remeshing procedures can be summarized in the 
following four steps [1, 2, 3]: 

Step 1: Determine the error estimator to define remeshing 
criterion 

Because remeshing must be performed when a specified 
tolerant error is exceeded [2], the error estimator or error 
indicator must then be determined. The error indicator is 
defined by the strain error in L2 norm, where the error 

τεe  for an element τ  is given by: 
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where ε  and hε  are the exact value and the finite element 
approximation of effective strain [1]. However, since the 

value of ε  is unknown, *ε  is then used to approximate 

the error instead, where *ε  is obtained by the recovery 
procedure.  

In order to reduce the error, a remeshing criterion is then 
defined to achieve minimum percentage error [1]. The 
remeshing criterion is defined as: 

 ηη ˆ≤    

where 
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And η̂  is the maximum relative percentage error allowed.  

The error estimator is also used to control the mesh size 
field of new mesh to be regenerated. The mesh size field is 
necessary to reduce the geometric interference (the 
penetration) between the deformable part and the die 
surfaces, and to control mesh gradation [1].  

Step 2: Remesh of the deformed body 

In this step, the new and improved mesh is generated using 
several operations, including splitting, collapsing, and 
swapping of mesh edges and faces, and geometry 
modification of mesh vertices, edges or faces [1]. 

Step 3: Map the state variables and history dependent 
variables from the old to the new mesh 

After generating a new mesh on the domain, the state 
variables and history-dependent variables are mapped from 
the old to the new mesh. For each node n in the new mesh, 
we have to determine which element in the old mesh it lies 
in, and map the variables of the old element onto the new 
mesh using the interpolation function [2]. To compute this 
procedure is very expensive; however, several methods 
have been developed which attempt to reduce the 
computational time in the mapping procedure, such as the 
“superconvergent patch recovery” method (SPR), by 
Zienkiewicz and Zhu [11, 12]. 

Step 4: Restart the simulation 

Restart the simulation on the new generated mesh. 

Because adaptive remeshing creates a new, more efficient 
mesh every time the specified error tolerance is exceeded, it 
could guarantee reasonably small error and solve the 
geometric distortion of the mesh during analysis. The 
disadvantage of this technique is its high computational 
cost especially during the procedure of determining the 
error estimator and mapping variables from an old to a new 
mesh. More importantly, computational costs increase 
considerably in analysis of more complicated geometries. 
The challenge of this technique, therefore, is to find an 
optimal mesh with the minimum number of nodes 
(unknowns), within a constraint, so that the finite element 
error does not exceed the specified limit, and computational 
costs are minimized. Furthermore, applying local 
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modification, instead of remeshing the entire domain also 
reduces the computational costs significantly [1].  

2.2 Arbitrary Lagrangian-Eulerian (ALE) 
The Arbitrary Lagrangian-Eulerian (ALE) method is 
another technique for handling the large deformation 
problem in finite element analysis. This method basically 
combines the features of pure Lagrangian analysis and 
Eulerian analysis, two common types of finite element 
analysis. The concepts of Lagrangian analysis, Eulerian 
analysis and ALE method are as follows: 

Lagrangian analysis 

In this type of analysis, mesh follows the deformation of 
the material during analysis, in other words, the mesh is 
connected to the material throughout the finite element 
calculation [5]. When performing finite element analysis of 
this type, the deformation path is approximated by 
increments in time; in each increment, the history of the 
material is taken into account as the initial condition for the 
next increment [4]. Since the mesh and the material are 
connected, severe distortion of the mesh can cause 
difficulty in the finite element calculation. It is here that 
adaptive remeshing must be applied to improve the shape 
quality of the mesh in order to continue the analysis.  

Eulerian analysis 

In contrast to Lagrangian analysis, the elements in Eulerian 
analysis are not deformed, because the mesh and the 
material are not connected. Instead, the mesh is fixed to a 
spatial coordinate system while the material flows during 
the simulation [4, 5]. This method is commonly used in 
fluid mechanics. Because there is no connection between 
the mesh and the material, it is more difficult to determine 
the history of the material. This causes the process of 
mapping variables in Eulerian analysis, called “Advection”, 
computationally expensive. Another problem of this type of 
analysis is that it is difficult to obtain an accurate 
description of the free surface.  

Arbitrary Lagrangian-Eulerian  

ALE is a method that combines the previous two types of 
analysis. In the ALE method, the mesh is neither connected 
to the material nor fixed to a spatial coordinate system. 
However, it is prescribed in an arbitrary manner [4]. During 
the analysis, the mesh elements deform according to the 
Lagrangian method, however, instead of repositioning the 
nodes at their original position and performing advection, 
as in the Eulerian method, the nodes are placed at other 
positions to obtain optimal mesh quality. The mesh nodes 
have velocity associate with them in order to obtain the 
updated mesh. Mesh velocity plays an important role in the 
ALE method, as it reduces the analysis error, and prevents 
mesh distortion [4]. Another important characteristic of this 
method is that it changes the location of the nodes in the 
existing mesh, instead of creating a completely new mesh 
like the adaptive remeshing method, and it maintains the 
same (or similar) mesh topology throughout the analysis 
[5].  

In conclusion, ALE is a Lagrangian analysis that takes 
advantage of the advection techniques of Eulerian analysis. 
The ALE method is more powerful than either the 
Lagrangian or the Eulerian method. However, because of 
its complexity, it is more computationally expensive than 
other types of analysis. Nevertheless, the main objective of 
this method is to reduce the number of complete adaptive 
remeshing required in the analysis and to lessen some 
computational costs.  

There are additional limitations in ALE analysis. In many 
cases the mesh suffers considerable distortion, and the 
same mesh topology cannot be held for the entire analysis. 
In such cases, complete adaptive remeshing is still required. 
Another drawback of ALE is the state-variables remapping 
step, which is much more complicated than in the 
Lagrangian method. Moreover, unless the remapping 
process is performed very accurately, the history of the 
material will not be properly understood [4]. 

3. THE PROPOSED METHOD 

As an alternative solution, a new mesh pre-deformation 
method is proposed here, to mesh the input part for 
Lagrangian analysis and improve the shape quality of the 
elements during analysis, in order to reduce the number of 
inverted elements and decrease the possibility of premature 
analysis termination.   

The method can be summarized in the following four steps: 

(1) Pre-Analysis: Run a pre-analysis on a simple uniform 
mesh to collect the node locations and stress information 
regarding the deformed part. 

(2) Bubble Mesh Packing: Find the optimal node locations 
inside the deformed boundary using Bubble Mesh [13-17]. 
Use the stress information obtained from Step 1 to control 
the size of elements, and use the boundary information to 
control the directionality of the mesh. Then generate a new 
mesh on the deformed boundary 

(3) Inverse Bilinear Mapping: Use inverse bilinear map-
ping [9, 10] to map the node locations from the deformed 
boundary to the undeformed boundary 

(4) Full Analysis: Run the actual analysis on the new pre-
deformed mesh 

The general concept behind this method is that the 
deformation behavior of the elements is predicted first from 
the initial analysis. Then information from the analysis is 
used to inversely map the new node locations generated by 
the Bubble Mesh [13-17] from the deformed boundary onto 
the initial boundary in order to generate input mesh for the 
real analysis. As a result, the pre-deformed mesh elements 
in the initial boundary would have the approximately 
inverse shape of the mesh elements in the deformed part of 
the pre-analysis. Figure 2 illustrates the overview of the 
proposed algorithm. The goal of this algorithm is to reduce 
the number of elements which are severely distorted, as 
well as to reduce the chance of premature termination of 
the analysis. Next, we will discuss each step of the 
algorithm in detail. 
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Figure 2: Overview of the proposed method 

3.1 Pre-Analysis 
The work presented in this paper can be achieved using any 
finite element package. For this paper, ABAQUS has been 
used to run the analysis. Followings are the models of the 
two example problems we considered in this paper: 

Example 1 

The model of this problem consists of a rigid die and a 
deformable blank. The blank is 0.3m by 0.3m and has 

6060× elements, with Young’s modulus of elasticity of 
100GPa, Poisson’s ratio of 0.3, and initial yield stress of 
200MPa. The geometry of the die is shown in Figure 3. 

The die moves downward on to the deformable blank with 
a constant velocity 0.2m/s, while the blank is constrained 
along the left and the bottom sides.  

 

 

 

 

Figure 3: Die geometry of example 1 

Example 2 [18] 

The model consists of a rigid die and a 20mm by 10mm 
deformable blank. The die has a sinusoidal shape with 
amplitude and period of 5 and 10 mm, respectively. The 
blank is steel and modeled as a von Mises elastic-plastic 
material with a Young's modulus of 200 GPa, an initial 
yield stress of 100 MPa, and a constant hardening slope of 
300 MPa. Poisson's ratio is 0.3; the density is 7800 kg/m3. 
The die is moved downward vertically at a velocity of 
2000 mm/sec and is constrained in all other degrees of 
freedom. 

From analysis of these models, the results give the 
boundary shape of the deformed blank and stress 
information, which will be used in the later steps. Pre-
analysis is carried out until severe distortion occurs, or 
when 50%-80% of the actual analysis is completed because 
we only want to predict the deformation behavior of the 
problem.  

3.2 Bubble Mesh 
In this step, we use the boundary of the deformed blank 
obtained from pre-analysis in the first step; square bubbles 
are packed inside the boundary and a new, all-quadrilateral 
mesh is generated. Details of Bubble Mesh algorithm can 
be found in [13-17].  

When generating the new input mesh, the size of element 
should be properly determined. Ideally, smaller elements 
are desired around the sharp-corner regions, where they 
tend to experience more distortion. For this reason, we use 
stress information collected from pre-analysis to control the 
size of elements through the tensor function of the Bubble 
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Mesh algorithm. Therefore, the new mesh has smaller 
elements around the sharp corners than elsewhere.  

In addition to size control, directionality of the mesh is also 
considered. Since boundary information is known, the 
directionality of the new mesh can be controlled to align 
with the boundary.  

The result of this step is a new graded quadrilateral mesh 
inside the pre-analysis deformed boundary. Figures 5 (1a-
1c) and (2a-2c) illustrate the bubble packing processes with 
size and directionality controls for Examples 1 and 2 
respectively.  

3.3 Inverse Bilinear Mapping 
After optimal node locations have been located inside the 
pre-analysis deformed boundary, we can now map the new 
node locations back to the initial boundary. To achieve this, 
we have to use the relation between the old node locations 
in the initial boundary and the new node locations in the 
deformed boundary, then apply inverse bilinear mapping 
[9, 10].  

Let (x,y) be the coordinate of the source space and (u,v) be 
the coordinate of the destination space.  

 dcvbuauvx +++= , and  (3) 

 hgvfueuvy +++= ,  (4) 

where a, b, c, d, e, f, g and h are constants. Solving for v in 
Equation 3, then substituting in Equation 4, we obtain: 

0))(())(( =−++−−++ xdbugeuyhfucau , or 

 02 =++ CBuAu .  (5) 

Similarly, solving for u  in the Equation 4, then 
substituting in the Equation 3, we obtain: 

0))(())(( =−++−−++ xdcufevyhgubav , or 

 02 =++ FEvDv .  (6) 

Equation 5 gives two solutions, and Equation 6 gives 
another set of two solutions. 
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However, since only one unique solution is valid for the 
range of 10 ≤≤ u  and 10 ≤≤ v , we obtain a unique 
solution. 

In summary, we first have to find out, in the deformed 
boundary, which old element ei that each new node ni lies 
in. Next we can calculate the u and v vectors that give the 
location of this new node ni inside the old element ei. Then 
the inverse bilinear mapping can be performed to map this 

new node from the deformed boundary to the undeformed 
boundary using the calculated vector u and v as shown in 
Figure 4.  

The result of this step is a new pre-deformed mesh inside 
the initial boundary. Figure 5-1d and 5-2d show the 
resultant pre-deformed mesh. 

 

     
 
 
 
 
 

Figure 4: Inverse Bilinear Mapping 

3.4 Full Analysis 
Run the full analysis on the new pre-deformed mesh 
obtained from the previous step on ABAQUS.  

4. RESULTS AND DISCUSSION 

In this section, the results from the analysis of the pre-
deformed mesh are shown and compared with the results 
from the analysis of the original uniform mesh. To illustrate 
the importance of mesh size control and mesh directionality 
control, we will also compare the analysis results of three 
different pre-deformed meshes: (1) Uniform sized pre-
deformed mesh, (2) Pre-deformed mesh with size control, 
and (3) Pre-deformed mesh with size and directionality 
controls. Since two examples are examined in this paper, 
each example will be examined individually. In each 
example, we will do the followings: 

a) Compare the results of the original uniform mesh and 
the pre-deformed mesh 

b) Show the importance of mesh size control. (Compare 
the results of pre-deformed mesh with and without 
mesh size control) 

c) Show the importance of directionality control. 
(Compare the results of pre-deformed mesh with mesh 
size control only and mesh with both size and 
directionality controls) 

 
Example 1 

a) Compare the results of the original uniform mesh 
and the pre-deformed mesh 

Figures 6 and 7 illustrate the analysis results of the original 
mesh, uniform-sized pre-deformed mesh (mesh without 
size or directionality control), pre-deformed mesh with 
mesh size control, and pre-deformed mesh with size and 
directionality controls respectively. By comparing 
maximum step time these analyses can carry out, it is 
apparent that the pre-deformed mesh could carry the 
analysis to further step than the original mesh, although less 
than half the number of nodes in the original mesh was 
used. The results are summarized in Table 1.  
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Furthermore, the maximum numbers of frames of the 
analyses can be used to compare how quickly the results 
converge. As shown in Table 1, the analysis of the original 
mesh used 332 frames to reach maximum step time of 
0.898, while the pre-deformed meshes require fewer 
numbers of frames to reach the greater maximum step time. 
This comparison implies that the pre-deformed meshes 
have larger step time increments and tend to converge 
faster than the original mesh.  

Table 1: Comparing maximum time and number of 
frames of the original and pre-deformed meshes 

(a) Original mesh 
(b) Uniformed-sized pre-deformed mesh 
(c) Pre-deformed mesh with size control 
(d) Pre-deformed Mesh with size and directionality control 
 
b) The importance of the graded mesh.  

It is demonstrated in Figures 6 and 7 that the thin elements, 
which we generate intentionally at the locations expected to 
encounter the sharp corner during analysis, are gradually 
unfolded as the analysis is continuing. Consequently, the 
shapes of the elements tend to be progressively improved 
as performing the analysis. However, when comparing the 
last frames of both analyses, as shown in Figure 8, it is 
shown there are yet some bad elements around the sharp 
corner of the pre-deformed mesh without the size control 
(Figure 8a). However, this problem can be solved when 
applying the mesh size control to yield smaller elements 
around the sharp corner, as shown in Figure 8b.  

c) The importance of the directionality control. 

The close look at another sharp corner on the right side of 
the deformed blank can illustrate the importance of the 
directionality control as shown in Figure 9. It is obviously 
shown in the figure, that with the mesh directionality 
controlled, we can significantly improve the shape of the 
elements in the result mesh. This is because when we 
generate the input mesh, we try to align the elements with 
the boundary. Therefore, when we run analysis on that 
input mesh, as the analysis is continuing, thin elements are 
unfold along the moving boundary, which reducing the 
chance of producing inverted elements. 

Example 2 

a) Compare the results of the original uniform mesh 
and the results of the pre-deformed mesh 

Figures 10 to 11 illustrate the analysis results of the original 
mesh, uniform sized pre-deformed mesh (Mesh without any 
size or directionality control), pre-deformed mesh with 
mesh size control, and pre-deformed mesh with size and 
directionality controls respectively. In this example, we do 
not encounter the early termination in the analysis of any 
case. However, the results at the later stages of all analyses 

contain many undesired bad shaped elements. Therefore, 
for this example, we compare the step time when each 
analysis start producing inverted elements. The results are 
summarized in the Table 2 below. 

According to the results shown in Table 2 above, the pre-
deformed mesh can effectively improve the results by 
extending the time before the analysis start producing 
inverted elements.  

Table 2: Comparing the step time when each 
analysis start producing inverted elements 

 Number of Nodes Step time start producing 
inverted elements 

Mesh 2-a 2718 1.368E-4 
Mesh 2-b 2533 1.672E-4 
Mesh 2-c 2517 3.420E-4 
Mesh 2-d 2585 3.344E-4 

(a) Original Mesh 
(b) Uniformed Sized Pre-deformed Mesh 
(c) Pre-deformed Mesh with size control 
(d) Pre-deformed Mesh with size and directionality control 
 
b), c) The importance of the size and directionality 
control.  

By comparing the step time each analysis start producing 
inverted elements in Table 2, it is shown that the pre-
deform mesh with size and directionality control give better 
results than the pre-deformed mesh with uniform mesh 
size. Moreover, by comparing the element shape in the 
result mesh at the step time where we take the boundary to 
generate new input mesh using bubble packing (Step time = 
1.5E-04) as shown in Figure 12, it is apparent that mesh 
size and directionality control improve the shape of the 
elements around the two sharp corners significantly.  

5. CONCLUSION 
According to the results shown in the previous section, four 
important points can be concluded 

1. The pre-deformed mesh can carry out the analysis to 
further step than the original mesh, which implies that 
the pre-deformed mesh can reduce the chance of early 
termination of the analysis. 

2. The pre-deformed mesh tends to converge faster with 
larger step increment. This will save the time 
completing the analysis.  

3. The mesh size control can solve the unwanted large 
angles in elements around the sharp corner. 

4. The mesh directionality control can improve the 
element shape around the sharp corner.  
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 Numbers of 
Nodes Max step time Max # of frames 

Mesh 1-a 1681 0.9018 275 
Mesh 1-b 1587 0.9235 279 
Mesh 1-c 1723 0.9217 307 
Mesh 1-d 1661 0.9221 267 
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Figure 5: Quadrilateral Bubble Mesh Packing and resultant pre-deform mesh for Examples 1 and 2 



 

 

 

 

 

 

 

 

 

 

 

 
(a) Original uniform mesh  (b) Pre-deformed mesh with uniform size 

Figure 6: Finite element analysis of the original uniform mesh (a) and the uniform sized pre-deformed mesh 
(b) (Example1) 
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(a) Pre-deformed mesh with size control  (b) Pre-deformed mesh with size and directionality controls 

Figure 7: Finite element analysis of the pre-deformed mesh with size control (a) and the pre-deformed mesh 
with size and directionality controls (b) (Example1) 

 

Frame = 0 
Step Time = 0.0 

Frame = 100 
Step Time = 0.6190 

Frame = 200 
Step Time = 0.8362 

Frame = 307 
Step Time = 0.9217 

Frame = 0 
Step Time = 0.0 

Frame = 100 
Step Time = 0.7775 

Frame = 200 
Step Time = 0.8572 

Frame = 267 
Step Time = 0.9221 



 

 

 

(a) The result of pre-deformed mesh without mesh 
size control 

 

(b) The result of pre-deformed mesh with mesh 
size control 

Figure 8: Comparing the sharp corner of the results of pre-deformed mesh with and without mesh size 
control 

 

 

 

 

 

(a) The result of Pre-deformed mesh without 
directionality control 

 

(b) The result of Pre-deformed mesh with 
directionality control 

Figure 9: Comparing the sharp corner of the results of pre-deformed mesh with and without mesh 
directionality control 



 

 

 

 

 

 

 

 

 

 

 

 
(a) Original uniform mesh  (b) Pre-deformed mesh with uniform size 

Figure 10: Finite element analysis of the original uniform mesh (a) and the uniform sized pre-deformed mesh 
(b) (Example2) 
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(a) Pre-deformed mesh with size control  (b) Pre-deformed mesh with size and directionality controls 

Figure 11: Finite element analysis of the pre-deformed mesh with size control (a) and the pre-deformed mesh 
with size and directionality controls (b) (Example2) 
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(a) Original Mesh 

 

 

 

(b) Uniform sized Mesh 

(c) Mesh with size control 

 

(d) Mesh with size and directionality control 

Figure 12: Result mesh at the step time where the boundary was taken to generate the new input mesh 


